Calculation Policy

Progression in the written calculations of addition and subtraction

WRITTEN METHODS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
read, write and interpret mathematical statements involving addition (+), subtraction $(-)$ and equals (=) signs		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

MENTAL CALCULATION					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
add and subtract onedigit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the four operations

Thurleigh \& Kymbrook Federation

Calculation Policy

Addition

Thurleigh \& Kymbrook Federation

Calculation Policy

Year 1

Thurleigh \& Kymbrook Federation

Calculation Policy

Addition

Year 4

Informal jottings to aid mental calculations
Continue to develop, supported by a range of models and images, including the number line and partitioning numbers as appropriate.

Written method (progressing to 4 -digits)
Expanded column addition modelled with place value counters, progressing to calculations with 4-digit numbers.

Compact written method
Extend to numbers with at least four digits.

Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty.

Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits).
72.8
$+54.6$
127.4

11

Year 5

Informal jottings to aid mental calculations
Continue to develop, supported by a range of models and images, including the number line and partitioning numbers as appropriate. Children should practise with increasingly large numbers to aid fluency
e.g. $12462+2300=14762$

Formal written method (progressing to more than 4-digits) As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.

$$
\begin{array}{r}
172.83 \\
+\quad 54.68 \\
\hline 227.51 \\
\hline
\end{array}
$$

111
Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Year 6

informal jottings to aid mental calculations
Continue to develop, supported by a range of models and images, including the number line and partitioning numbers as appropriate. Children should practise with increasingly large numbers to aid fluency
e.g. $12462+2300=14762$

Formal written method

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured.

Continue calculating with decimals, including those with different numbers of decimal places
$124.9+117.25=242.15$
124.90 add zero as a place holder
$+117.25$
242.15

Problem Solving
Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

Thurleigh \& Kymbrook Federation

Calculation Policy

Subtraction

Thurleigh \& Kymbrook Federation

Calculation Policy

Year 1 - continued	Year 2 - continued	Year 3 - continued
Record subtraction by drawing jumps on prepared number lines and constructing own number lines. To reinforce concept use practical strategies to see 'difference': The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation. The use of other images is also valuable for modelling subtraction e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead strings Teachers to model jottings appropriate for larger numbers.	Towards written methods Using Dienes apparatus to support the understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. E.g. 75-42	Written methods (progressing to 3-digits) Introduce expanded column subtraction, modelled with place value counters (Dienes could be used for those who need a less abstract representation). $\begin{array}{r} 98 \\ -\quad 35 \\ \hline 63 \end{array}$ For some children this will lead to exchanging, modelled using place value counters (or Dienes). $\begin{array}{r} 6 \not{ }^{1} 2 \\ -\quad 47 \\ \hline 25 \end{array}$ A number line and expanded column method may be compared next to each other. Some children may begin to use a formal column method, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

Thurleigh \& Kymbrook Federation

Calculation Policy

Subtraction

Year 4	Year 5	Year 6
Missing number/digit problems: $\begin{aligned} & 456+\square=710 ; 60+99+\square=340 ; 200-90-80=\square ; 225-\square=150 ; \\ & \square-25=67 ; 3450-1000=\square ; \square-2000=900 \end{aligned}$ Mental methods should continue to develop, supported by a range of models and images, including the number line. Informal jottings to aid mental calculations Using a number line to count on (complementary addition) Use a number line to count on, using jumps above the number lines E.g. $754-86=668$ Formal written methods (progressing to 4-digits) 932-457 becomes Answer: 475	Missing number/digit problems: $\begin{aligned} & 6.45=6+0.4+\square ; 119-\square=86 ; 1000000-\square=999000 ; \\ & 600000+\square+1000=671000 ; 12462-2300=\square \end{aligned}$ Mental methods should continue to develop, supported by a range of models and images, including the number line. Informal jottings to aid mental calculations Using a number line to count on (complementary addition) Use a number line to count on, using jumps above the number lines E.g. $8006-2993=5013$ Formal written methods (progressing to more than 4-digits) Progress to calculating with decimals, including those with different numbers of decimal places. $\begin{array}{r} 23^{4} / 52^{1} .4 \\ -\quad 178.2 \\ \hline 174.2 \end{array}$	Missing number/digit problems: \square and \# each stand for a different number. \# = 34. \# + \# = $\square+\square+$ \#. What is the value of \square ? What if \# = 28? What if \# = 21 $10000000=9000100+\square 7-2 \times 3=\square$; $(7-2) \times 3=\square ;(\square-2) \times 3=15$ Mental methods should continue to develop, supported by a range of models and images, including the number line. Formal written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with decomposition to be secured. Teachers may also choose to introduce children to other efficient written layouts which help develop conceptual understanding. For example: Continue calculating with decimals, including those with different numbers of decimal places.

Calculation Policy

Progression in the written calculations of multiplication and division

WRITTEN METHODS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication divide numbers up to 4 -digits by a twodigit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context use written division methods in cases where the answer has up to two decimal places

MENTAL CALCULATION AND KNOWN FACTS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
make connections between arrays, number patterns, and counting in twos, fives and tens.	recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables,	recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables use known multiplication, including for two-digit numbers times one-digit numbers to mentally calculate multiplication and division statements	recall multiplication and division facts for multiplication tables up to 12×12 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts multiply and divide whole numbers and those involving decimals by 10, 100 and 1000	perform mental calculations, including with mixed operations and large numbers

Thurleigh \& Kymbrook Federation

Calculation Policy

Multiplication

Year 1	
Pictures, symbols and practical resources	
Use pictures, symbols and practical resources as a model for	
multiplication. Understand multiplication is related to doubling	
and combing groups of the same size (repeated addition).	
E.g. There are 3 sweets in one bag. How many sweets are there in	
5 bags?	

Problem solving with concrete objects (including money and measures.

Use arrays to understand multiplication can be done in any order (commutative):

$0000^{4 \times 2=8}$
 0000

$2 \times 4=8$

$x=$ signs and missing numbers

Expressing multiplication as a number sentence using x Using understanding of the inverse and practical resources to solve missing number problems.
$7 \times 2=\square$

$$
\square=2 \times 7
$$

$$
\square \times 2=14
$$

$7 \times \square=14$
$14=\square x 7$
$14=\square \mathrm{x} \nabla$

Developing use of arrays and number lines

Develop understanding of multiplication using array and number ines (see Year 1). Include multiplications not in the 2, 5 or 10

Doubling multiples of 5 up to 50

Use knowledge of doubling to double multiples of 5 up to 50 . Record this using partitioning

$$
\text { E.g. } 15 \times 2=30
$$

$$
\begin{aligned}
15 \times 2 & =10 \times 2+5 \times 2 \\
& =20+10
\end{aligned}
$$

$$
=30
$$

Begin to develop understanding of multiplication as scaling (3 times bigger/taller).
Doubling numbers up to $10+10$. Using known doubles to work out
double 2d numbers
double 15 = double 10 + double 5)

Towards written methods - Use jottings to develop an understanding of doubling two digit numbers.

Year 3

$x=$ signs and missing numbers
Continue using a range of equations as in Year 2 but with appropriate numbers.

Informal jottings to aid mental calculation

Using partitioning

Doubling 2 digit numbers using partitioning. Demonstrating multiplication on a number line - jumping in larger groups of amounts $13 \times 4=10$ groups $4+3$ groups of 4

Towards a formal written methods
Partition 2-digit numbers and then use the grid method to record multiplication Developing written methods using understanding of visual image
Develop onto the grid method

Give children opportunities for children to explore this and deepen understanding using Dienes apparatus and place value counters

	10	8
3	30	24

Progressing to a standard written method (two-digit by a onedigit)

Thurleigh \& Kymbrook Federation

Calculation Policy

Multiplication

Year 4	Year 5					Year 6
Missing number/digit problems: Continue with a range of equations with appropriate numbers. Also include equations with missing digits $\square 2 \times 5=160$ Mental methods Counting in multiples of 6, 7, 9, 25 and 1000, and steps of 1/100. Solving practical problems where children need to scale up. Relate to known number facts. (e.g. how tall would a 25 cm sunflower be if it grew 6 times taller?) Consolidation of multiplying two two-digit numbers Children to embed and deepen their understanding of the grid method to multiply up 2d $\times 2 \mathrm{~d}$. Ensure this is still linked back to their understanding of arrays and place value counters. Model how to find approximate answers to encourage pupils to estimate first. Formal written method (two-digit and three-digit by one-digit) First using the expanded method: Moving towards the compact method: 342×7 becomes Answer: 2394	Missing number/digit problems: Continue with a range of equations with appropriate numbers. Also include equations with missing digits Mental methods X by 10, 100, 1000 using moving digits Use practical resources and jottings to explore equivalent statements (e.g. $4 \times 35=2 \times 2 \times 35$) Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning). Solving practical problems where children need to scale up. Relate to known number facts. Identify factor pairs for numbers. Formal written methods including long multiplication up to fourdigit by two-digit numbers Long multiplication using place value counters Children to explore how the grid method supports an understanding of long multiplication. Four-digit by two-digit:					Missing number/digit problems: Continue with a range of equations with appropriate numbers. Also include equations with missing digits Mental methods Identifying common factors and multiples of given numbers. Solving practical problems where children need to scale up. Relate to known number facts. Formal written methods Continue to refine and deepen understanding of written methods including fluency for using long multiplication. 1 Extend to decimals with up to two decimal places (multiplied by one or two digit whole numbers) Use written division methods in cases where the answer has up to two decimal places.

Thurleigh \& Kymbrook Federation

Calculation Policy

Division

Year 1	Year 2	Year 3
Mental calculation: Children must have secure counting skills- being able to confidently count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Using pictures, marks and symbols Use pictures, symbols and practical resources as a model for division. Group AND share small quantities- understanding the difference between the two concepts. Sharing Develops importance of one-to-one correspondence. Children should be taught to share using concrete apparatus. E.g. sharing marbles between a group of friends. Grouping Children should apply their counting skills to develop some understanding of grouping. $15 * 3=5$ Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 . $15 \div 5=3$ There are 3 groups of 5 . Children should be able to find $1 / 2$ and $1 / 4$ and simple fractions of objects, numbers and quantities.	$\begin{array}{ll} \Varangle \div=\text { signs and missing numbers } \\ \hline 6 \div 2=\square & \square=6 \div 2 \\ 6 \div \square=3 & 3=6 \div \square \\ \square \div 2=3 & 3=\square \div 2 \\ \square \div \nabla=3 & 3=\square \div \nabla \end{array}$ Understand division as sharing and grouping Use the sharing and grouping models of division practically and then using pictures, marks or symbols, before progressing to division on a number line. Sharing - 18 sweets are shared between 3 people. How many do they have each? Grouping - There are 18 sweets. How many people can have 3 each? (How many 3s make 18?) Using arrays Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array - what do you see?	$\doteqdot=$ signs and missing numbers Continue using a range of equations as in Year 2 but with appropriate numbers. Becoming more efficient using a number line Children need to be able to partition the dividend in different ways. $48 \div 4=12$ Remainders Sharing - 49 shared between 4 . How many left over? Place value counters can be used to support children apply their knowledge of grouping. For example: $60 \div 10=$ How many groups of 10 in 60 ? $600 \div 100=$ How many groups of 100 in 600 ?

Thurleigh \& Kymbrook Federation

Calculation Policy

Division

Year 4	Year 5	Year 6
$\dot{\doteqdot}=$ signs and missing numbers Continue using a range of equations with appropriate numbers. Towards a formal written method Alongside pictorial representations and the use of models and images, children should progress onto short division. Place value counters can be used to support children apply their knowledge of grouping. Reference should be made to the value of each digit in the dividend. Formal written method for short division Use place value counters to understand the written method. When children have conceptual understanding and fluency using this method without remainders, they can then progress onto 'moving' their remainder across to the next digit.	$\doteqdot=$ signs and missing numbers Continue using a range of equations with appropriate numbers. Formal written methods of short division (up to 4 digits by a onedigit number) $432 \div 5$ becomes Answer: 86 remainder 2 Division with remainders Interpret remainders appropriately for the context $432 \div 5$ becomes Answer: 86 remainder 2	$\dot{\dagger}=$ signs and missing numbers Continue using a range of equations with appropriate numbers. Formal written method of short division(up to 4 digits by a twodigit number where appropriate). $496 \div 11$ becomes Formal written method of long division (up to 4 digits by a twodigit number where appropriate) Division with remainders Answer: 28.8 Interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Begin to express quotients as fractions or decimal fractions E.g. $61 \div 4=15 \mathrm{r} 1$ would be expressed as $151 / 4$ or 15.25 E.g. $79 \div 4=19 r 3$ would be expressed as $193 / 4$ or 19.75

